
MATHEMATICS OF COMPUTATION 
VOLUME 53, NUMBER 187 
JULY 1989, PAGES 431-437 

A New Lower Bound for Odd Perfect Numbers 

By Richard P. Brent and Graeme L. Cohen* 

Abstract. We describe an algorithm for proving that there is no odd perfect number less 
than a given bound K (or finding such a number if one exists). A program implementing 
the algorithm has been run successfully with K = 10160, with an elliptic curve method 
used for the vast number of factorizations required. 

1. Introduction. Let a(N) be the sum of the positive divisors of the natural 
number N. If a(N) = 2N then N is called perfect. Most elementary textbooks in 
number theory show that an even number is perfect if and only if it has the form 
2a-1 (2a - 1), where 2a - 1 is a (Mersenne) prime, so that the search for even perfect 
numbers is equivalent to the search for Mersenne primes. No odd perfect number 
has been found, but it has not been proved that none exists. 

The search for odd perfect numbers has often proceeded by showing that there 
is none less than a given bound K. Kanold [10] did this for K = 1020 in 1957, and 
improvements were given by Tuckerman [14] (K = 1036) and Hagis [9] (K = 1050). 
The last-mentioned result has been accepted (e.g., by Guy [8] and Wagon [15]) as 
the best to date, despite announced extensions [5], [6] up to K = 10200. Details 
of these extensions have never been published; an alternative proof [13] of Hagis's 
result was not acceptable to a reviewer [12]. 

Being wary of the fate of these later "proofs", we have adopted a very straight- 
forward, algorithmic approach to prove the 

THEOREM. There is no odd perfect number less than 10160. 

The proof is almost entirely computer generated and has some similarity to 
Tuckerman's. In being a comprehensive case study, the proof is also similar to that 
of Beck and Najar [1], who showed that there are no odd triperfect numbers (odd 
numbers M for which a(M) = 3M) less than 1050. (This bound was improved to 
1070 by Cohen and Hagis [7], and could no doubt be still further improved by the 
methods of the present paper.) For the many large factorizations required in our 
proof, an elliptic curve method [2] was used. The chosen bound 10160 is related 
to the state of the art in factorization methods, in which 80-digit numbers are 
accessible. 

Some general background is given below, followed by a deeper analysis of the 
method. 
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2. Overview of the Method. On the assumption that there is an odd perfect 
number N, Euler showed that necessarily N = H$=o p" for distinct odd primes 

Po,.p,pt, with (say) po _ ao=1 (mod 4) and ai _ O (mod 2) for i = 1,...,t. 
This will be our standard form for N. Each p?i is called a component of N, and 

po is called the special prime. 
Since a is multiplicative and u(N) = 2N, the sets {q: q prime, q > 2, q I a(pat) for 

some i = 0, 1, . .. , t} and {po, . . ., } are equal. This leads to the customary factor- 
chain method for problems involving odd perfect numbers. From any postulated 
component pa of N, we may generate further prime factors of N, namely the 
odd prime factors of a(pa). For such a prime q, we postulate an exponent b and 
then factorize o(qb) to generate still more prime factors of N. The process is 
continued until a contradiction is reached (or an odd perfect number is found!). The 
set of contradictions resulting from an exhaustive choice of primes and exponents 
constitutes a proof of the relevant theorem. 

For any prime p, a(pa) I u(pb) if a + 1 b + 1, so that for many purposes, including 
ours, it is sufficient in postulating an exponent a to require that a + 1 be prime. 
Thus, in particular, it may be assumed that ao = 1. The possible prime divisors 
of a(pa), where p and a + 1 are prime and a > 1, are a + 1 (exactly) if and only if 
p-1 (mod (a + 1)), and primes q 1 (mod (a + 1)). (See Nagell [11, Theorems 
94 and 95].) 

For our theorem, we suppose that N is an odd perfect number and N < 10160. 

If pa, a even, is a postulated component of N, then we may assume pa < 1080, since 
otherwise N > paa(pa) > p2a > 10160. (The same is true, though not obvious, if 
a = 1; however this case does not arise.) This bounds the possible exponents to be 
considered. 

To avoid repeating the same factorizations, some experimentation suggested that 
we postulate (and then eliminate) the following primes in turn as factors of N: 
127, 19, 7, 11, 31, 13, 3,5. If none of these is a factor of N, then N must have at least 
101 distinct prime factors, for if there were less, then 

Pi= 2=0 P -= n - 'Pi <'< - < 21 
N i= i- i= pi - 1 16 '92 F8 p p- 

where P is the set of primes p satisfying 37 < p < 599, p # 127. This is a 
contradiction. (There are 100 factors altogether in the right-hand product.) We 
then have 

N> (17.23.29.f1)2.601 >1o473~ 

( P )P 

so that the elimination of the eight mentioned primes as possible factors of N 
proves the theorem. (It was convenience, rather than necessity, and a striving for 
simplicity of exposition, that led us to consider these primes.) Once one of the 
eight primes was eliminated, its occurrence in a later factor chain terminated that 
chain. 

Individual factor chains were continued, using the largest prime found in the 
previous factorization, until either there was a component exceeding 1080 or until 
the product of every prime generated in the chain, often with their exponents ad- 
justed upwards in conformity with Euler's form, exceeded 10160. Care was required 
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in insisting the exponent be 1 on the largest prime generated which was congruent 
to 1 (mod 4), if no other prime in the chain had been postulated as the special 
prime (unless of course this largest prime was generated more than once but it 
never was). 

Some chains could be terminated early because of the occurrence of previously 
eliminated primes, as mentioned above. In other cases, several small primes were 
generated whose product, with exponents adjusted in accordance with Euler's form, 
was a number m satisfying S = u(m)/m > 2. Any divisor I of N must satisfy 
o(l)/l < 2, so this "S-test" provided another means of terminating chains early. 

Many composite numbers or probable primes arose for which factorization or 
primality testing was not required. These numbers were checked for common factors 
with other numbers in the chain and then entered into the product with those 
numbers, with exponent 1. Testing for common factors by the Euclidean algorithm 
is, in general, must faster than factorization. 

3. A Closer Look. Figure 1 is an extract from the program's output, illus- 
trating the points made above. It shows the end of the elimination of 19 as a factor 
of N, and the beginning of the elimination of 7. The various symbols are described 
in the following discussion of some of the lines. 

940: 19^42 -> 18917672548149688895557513.p29, Bi 132 
941: 28461948730641665973894996037^1 -> 7.223.n, B1 164 
942: 28461948730641665973894996037^2 A > 3.67.97.397.433.n, B1 202; q^4, B2 227 
944: 19^46 => p59, B1 117 
945: pS9l => 3.37.113.n, Bi 180; q^2, 82 235 
947: 19^52 => 107.323930821687153.2551089855701675251204783.p26, B1 173 
948: 19^58 -> p75, B1 148 
949: p75^l => 3.n, Bi 222; q^2, B2 296 
951: 19A60 => p77, B1 153 
952: p77^1 -> 109.n, BI 231; q^2, B2 306 
954: 19^66, B2 168 

955: 7A2 -> 19..., D 
956: 7A4 => 2801, Bi 6 
957: 2801^1 -> 3.467, Bi 13 
958: 467^2 -> 19..., D 
959: 467A4 4> 11.31.41.3409261, B1 39 
960: 3409261^2 -> 3.7.31.43..., S 3^2.7^4.11^2.31^ 2.41^ 2.43^2 
961: 3409261^4 => 5..., S 3A2.5^2.7A4 
962: 3409261^6 => 1009.44129.387199.p26, 81 144 
963: 91077720102741705253194653A2 -> 43..., S 3^2.7A4.11^2.31^ 2.41^ 2.43A2 
964: 91077720102741705253194653^4, B2 207 
965: 3409261^10 => 74449.16180057477.138855190541.P40, B1 222 
966: 3409261^12 => 53..., S 3^2.7 74.11A ^2.3 J2.4 1 2.53^2.467^4 
967: 3409261^16, B2 209 
968: 467^6 -> 449.104707.221110919, Bi 55 
969: 221110919^2 => 13.pl6, Bi 89 
970: 3760772209395037^2 => 3.7.2371.164173.741859.P16, B1 148 
971: 2332276869007711^2 => 19..., D 
972: 2332276869007711^A4, B3 179 
973: 3760772209395037^A4 -> 41.n, B1 184; q^6, B2 186 
975: 221110919^4 -> 41.3994171.66010998331.plS, Bi 139 
976: 221112832862321^2 -> 31.151.n, Bi 171; q^4, 83 167 

FIGURE 1 

Extract from the computer output. 
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955: If 72 11 N then a(72) = 3 19 1 N. We use D to indicate a divisor previously 
eliminated and ... to indicate that the other factors are irrelevant. 

956: If 74 11 N then a(74) = 28011 N. 
957: 2801 is the special prime. Later cases will consider the exponents 2,4,6, 

10, ... on 2801. We use Bi as a "running" bound; it is Llog10 Bj, where B is 
the least common multiple of the primes appearing to that point (possibly 
with exponents adjusted in accordance with Euler's form). Here Bi = 13 
since so far N > 32 74 . 4672 2801 > 1013. 

960: The factor m - 32 74. 112 312 . 412 . 432 of N may be identified; but 
a(m)/m > 2. Such an occurrence is indicated by S followed by the worst- 
case possible exponents on the primes that have occurred. 

962: p# means a prime of # decimal digits, congruent to 1 (mod 4), de- 
fined by division or the same as on the previous line. Here, p26 = 
a(34092616)/(1009 .44129 387199). This prime is printed in full on the 
following line. 

964: B2 is Llog10 Bj, where B is the square of the indicated component. Here, 
N > (p26)8 > 10207 

970: P# is a prime with # decimal digits, like p# but congruent to 3 (mod 4). 
Such primes are always squared in the product. The prime on the left is 
p16 from line 969. 

972: B3 is Llog10 B], similar to Bi but where, in calculating B, account is not 
taken of a (pa) for the current component pa. Thus this bound applies when 
pa I N , not merely when pa 11 N. The present subcase is concluded because 
we must have 

N > 2801.(3.13.449.2371.104707.164173.741859.221110919.3760772209395037)2 

* (7 2332276869007711)4 . 4676 > 10179. 

973: n means a number (prime or composite it was not necessary to determine 
which in order to exceed our bound) which is entered into the least common 
multiple with the other primes in the chain. The use of the least common 
multiple effectively clears n of any earlier primes in the chain. As usual, 
those other primes may have their exponents adjusted. 
q refers to the prime at the beginning of the line. This is a space-saving 
device only. Note the implicit line number 974. 

The complete output has 3133 lines and appears in the Supplements section of 
this issue. 

4. Comments on the Program. Our program is written almost entirely in 
Pascal and runs on a VAX computer. A few inner loops of the multiple-precision 
arithmetic routines are coded in VAX assembler to speed up their execution. 

The program accepts as input a bound K, a set of prime "forbidden divisors", 
i.e., primes which may be assumed to have already been ruled out as divisors of N, 
and one or more further primes to be considered as potential divisors of N. 

The program implements the procedure outlined in Section 2. Suppose that at 
some point we are considering powers of p as divisors of N and we can assume 
pa IN, where a + 1 is prime. At this point we know that B I N, where B is a certain 
product of prime powers considered already. 
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The program computes two bounds, f2 = p2a and f3 = LCM(pa, B), and their 
maximum f = max(f2, f3). Clearly, N > f, so the program can stop consideration 
of powers of p if 0 > K. This is indicated in the output by B2 or B3, followed by 
Llog10 pg. For example, at line 954 of Figure 1, the program stops consideration of 
powers of 19 because Llog10 19132] = 168 is sufficiently large. 

If f is not sufficiently large, the program assumes that pa IN and attempts to 
factorize a(pa), using first trial division and then Lenstra's single-phase elliptic 
curve algorithm [2] (except if p E {3, 5, 7, 11}, in which case we used Brillhart et al. 
[4]). The program gives up the attempt if it does not succeed in a specified number 
of iterations. At this point it generally has 

,j(pa) = C. * p 

i=l 

where c is either 1 or a composite number, and the pa? are powers of distinct primes 
Pi. (We can assume that the pi are not primes which have been considered already 
and ruled out as possible divisors of N.) 

At this point, the known divisor B of N can be updated. We know that p bi IN, 
where 

b ai + 1, if ai is odd and pi could not be the special prime, 

1 ai, otherwise, 

so we can set B +- LCM(B, c, W.=1 pibi) In the output, the program gives Bi, 
followed by Llog10 B] to indicate the size of B. 

The program performs the S-test using exact (rational) arithmetic and the 
known factorization of B. Here, if one of several primes appearing to the first 
power in B could be the special prime, then we must assume that the smallest 
of them is special and square the others. For other bounds, such as Bi, we must 
assume that the largest such prime is special and square the others. 

If pa has been ruled out as an exact divisor of N, we increase a and repeat the 
procedure outlined above. As noted in Section 2, it is enough to consider exponents 
a such that a + 1 is prime. 

If pa has not been ruled out, we choose one of the pi which divide a(pa) and 
consider powers of pi as divisors of N. Generally, the program chooses the largest 
known pi, but it will avoid certain primes if instructed to do so (usually as a result 
of some experimentation). For example, we avoid 128341 and 567661 because this 
shortens the proof by 58 lines. 

If the choice of pi would cause the program to loop forever in a finite cycle of 
primes, the next largest candidate pi is chosen, etc. If no choice of pi is satisfactory 
(possibly because a(pa) has no known prime factors), the program "backtracks" 
by ruling out the choice of p at an earlier stage. Eventually, either the program 
succeeds by constructing a proof, or fails by backtracking to one of the primes which 
were input as divisors to be considered. 

The program prints a "trace" of its progress, and in particular it prints those 
pa at which it has to backtrack. We may then attempt to factorize a(pa) by other 
means (e.g., use of a two-phase elliptic curve algorithm [2]) and add any new factors 
to a file of "hints". When attempting a factorization, the program looks in this 



436 RICHARD P. BRENT AND GRAEME L. COHEN 

file of hints before attempting the elliptic curve algorithm. The program also adds 
factors which it finds by the elliptic curve algorithm to the hints file. Our hints file 
now contains several thousand factors of a(pa) and is indexed by p and a for fast 
access. 

Our first proof to 10160 had many incomplete factorizations and several ex- 
amples of backtracking. However, we have now eliminated the backtracking and 
completed all factorizations which are relevant to the proof. An element of luck 
entered into this as our elliptic curve algorithm cannot be relied on to find fac- 
tors greater than 1020 in a reasonable time (i.e., a few days on a VAX 11/750). 
The largest factor required for the proof to 10160 is the 31-digit factor P31 = 

5956707000538571084106691363703 of a(6142). Finding P31 by the elliptic curve 
algorithm required a total of about 1.5 x 109 multiplications mod a(6142) on sev- 
eral SUN workstations. 

Our program uses a probabilistic primality test, so it is possible (although most 
unlikely) that it might mistake a composite number for a prime. However, all 
probable primes required for the proof were written on a file and rigorously proved 
prime by another program. In all cases, the latter program was able to prove 
primality using a recursive application of the "p - 1" or "p + 1" primality tests [4]. 

5. Extensions. Our bound of 10160 could certainly be improved if a few dif- 
ficult factorizations were completed. For example, to go beyond 10160, we need to 
factorize the 81-digit composite number a(1372). Of course, special arguments can 
be used if we know that 1372 11 N, but in order to keep the proof simple, we wish 
to avoid the need for a multiplicity of special cases. 

In an unpublished paper [3], we have extended the bound of 10160 given here to 
10200. This uses an improvement of the B2 bound to handle composite numbers 
such as a(1372). Further computations are still being carried out, and our lower 
bound is likely to be still further improved. We hope to publish a second paper on 
this subject, containing the improved technique, at a later date. 

Acknowledgment. We thank Dr. H. J. J. te Riele and R. Silverman for their 
kind assistance with some factorizations which, although not essential to the proof, 
enabled us to avoid backtracking and to eliminate the last remaining composite 
numbers whose appearance in the proof was aesthetically displeasing. 

Added in Proof. The lower bound has been improved now to 103?0. The details 
will be published later. Many of the factorizations required were supplied by Dr. 
te Riele, including: a(1372) = 145009586102490829218552548223336637 p46. 

Computer Sciences Laboratory 
Research School of Physical Sciences 
The Australian National University 
GPO Box 4 
Canberra, ACT 2601, Australia 
E-mail: rpb@phys4.anu.oz 

School of Mathematical Sciences 
University of Technology, Sydney 
PO Box 123 
Broadway, NSW 2007, Australia 
E-mail: glcohen@utscsd.oz 



A NEW LOWER BOUND FOR ODD PERFECT NUMBERS 437 

1. W. BECK & R. NAJAR, "A lower bound for odd triperfects," Math. Comp., v. 38, 1982, pp. 
249-251. 

2. R. P. BRENT, "Some integer factorization algorithms using elliptic curves," Australian Com- 
puter Science Communications, v. 8, 1986, pp. 149-163. 

3. R. P. BRENT, G. L. COHEN & H. J. J. TE RIELE, An Improved Technique for Lower Bounds for 
Odd Perfect Numbers, Report TR-CS-88-08, Computer Sciences Laboratory, Australian National 
University, August 1988. 

4. J. BRILLHART, D. H. LEHMER, J. L. SELFRIDGE, B. TUCKERMAN & S. S. WAGSTAFF, 
JR., Factorizations of bn ? 1, b = 2,3,5,6,7,10,11,12 Up to High Powers, Contemp. Math., vol. 22, 
Amer. Math. Soc., Providence, R.I., 1983. 

5. M. BUXTON & S. ELMORE, "An extension of lower bounds for odd perfect numbers," 
Notices Amer. Math. Soc., v. 23, 1976, p. A-55. 

6. M. BUXTON & B. STUBBLEFIELD, "On odd perfect numbers, " Notices Amer. Math. Soc., 
v. 22, 1975, p. A-543. 

7. G. L. COHEN & P. HAGIS, JR., "Results concerning odd multiperfect numbers," Bull. 
Malaysian Math. Soc., v. 8, 1985, pp. 23-26. 

8. R. K. GUY, Unsolved Problems in Number Theory, Springer-Verlag, New York, 1981. 
9. P. HAGIS, JR., "A lower bound for the set of odd perfect numbers," Math. Comp., v. 27, 

1973, pp. 951-953. 
10. H.-J. KANOLD, "Uber mehrfach vollkommene Zahlen. II," J. Reine Angew. Math., v. 197, 

1957, pp. 82-96. 
11. T. NAGELL, Introduction to Number Theory, Chelsea, New York, 1981. 
12. B. M. STEWART, Math. Rev., 81m:10011. 
13. B. STUBBLEFIELD, "Lower bounds for odd perfect numbers (beyond the googol)" in Black 

Mathematicians and Their Works, Dorrance, Ardmore, PA, 1980, pp. 211-222. 
14. B. TUCKERMAN, "A search procedure and lower bound for odd perfect numbers," Math. 

Comp., v. 27, 1973, pp. 943-949. 
15. S. WAGON, "Perfect numbers," Math. Intelligencer, v. 7, 1985, pp. 66-68. 


